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Statistical Extreme Value Analysis Concerning Risk

of Wingtip to Wingtip or Fixed Object Collision

for Taxiing Large Aircraft∗

Summary

This report describes the analysis concerning the risk of collision between two large aircraft
taxiing on parallel taxiways and the risk of collision between a large taxiing aircraft and a
fixed object, such as a building.

The data used for this study came from two sources, namely

1. New York’s John F. Kennedy International Airport (JFK), where 747 taxiway deviation
data were collected from 6/24/1999 to 2/17/2000 at two laser locations. The two lasers
monitored simultaneously two parallel 75 ft straight taxiway segments with shoulder
called ALPHA and BRAVO, respectively.

2. Anchorage International Airport (ANC), where 747 taxiway deviation data were col-
lected from 9/24/2000 to 9/27/2001 at two laser locations for each of two (not parallel)
75 ft straight taxiway segments with shoulder called KILO and ROMEO, respectively.

Although these data sets were screened to capture mostly 747 deviations there is the possi-
bility that other, similarly large aircraft, e.g., L-1011, A-330, A-340, 777, MD-11 and DC-10,
were included. This possibility is stronger for the JFK data than for the ANC data. For the
latter we expect most deviations to be from 747 aircraft.

These deviation data (nJFK = 2, 518 and nANC = 9, 796 with a combined total of n = 12, 314
deviations) were previously analyzed with regard to extreme deviations of individual aircraft
from the taxiway centerline and the results are documented in reports [8] and [9]. These
reports addressed the risk of an aircraft deviating at a fixed location along the taxiway
beyond a certain threshold distance from the taxiway centerline.

∗Data gathered and provided by the FAA. Analysis and report prepared by Fritz Scholz, The Boeing
Company, June 13, 2005.
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The deviation data were taken over a good part of a year at JFK and over a full year at
ANC. There was no apparent seasonal or time of day effect. Taxiway centerline lights and
higher vigilance under adverse conditions may have compensated for any impact from such
factors.

The character of the deviation distribution at JFK and ANC is very similar, the only dif-
ference being that the JFK deviations are spread out more than the ANC deviations by a
factor of 1.097. We speculate that the 10% wider spread in the JFK deviations results from
the fact that the centerline lights are offset from the taxiway centerline by 12 inches at ANC
and by 22 inches at JFK. This difference in offset of the centerline lights could cause wider
meandering swings at JFK than at ANC because pilots tend to avoid the bumping of the
nose gear wheels on the slightly protruding lights.

Taxiway Centerline Separation from Object for Wingtip to Object Clearance

Although it would have been easily possible to characterize the relation between object
separation from taxiway centerline (T ), wingspan (W ), aircraft deviation (d) from taxiway
centerline, and collision risk (p), it was not done in reports [8] and [9]. Instead it is done
here in parallel with the corresponding risk of two aircraft colliding with each other at their
respective wingtips while taxiing on parallel taxiways.

Since the aircraft centerline deviations were measured at a particular point (laser location)
along the taxiway they do not reflect the maximum deviation over a straight taxiway segment.
These maximum deviations tend to be more spread out than the measured point deviations
at one specific location. Using such point deviation data for risk calculations would allow us
to calculate the risk of deviating too far from taxiway centerline at some specific point but it
would lead to some underestimation of the risk of deviating too far from taxiway centerline
somewhere along the taxiway.

The potential collision situation between an aircraft wingtip and a fixed object is shown in
Figure 1. Here T indicates the distance of the fixed object from the taxiway centerline, W
is the wingspan of the taxiing aircraft and d the deviation of the aircraft from the taxiway
centerline when first encountering the fixed object. As illustrated in Figure 1 a collision is
avoided when

T >
W

2
+ d .

In Figure 1 the fixed object is shown as the rectangular box of a building. Technically
this risk assessment is affected by the same concerns that were raised previously in the
context of running off the taxiway, since we deal with the lengthwise exposed section of the
building. However, here one may make the case that the first exposed corner represents the
point location of interest and one would think that a pilot who comes too close to that point
(without colliding) will not proceed in that direction towards the building. In this we assume
that the pilot is aware of the building and that it is not hidden in fog. Also, the side of the
building is typically much smaller than the length of a straight taxiway segment.
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Figure 1: Separation Clearance Between Aircraft and Fixed Object (Building)
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Thus the distribution of maximum deviation over such a shorter length is not too much
different from the deviation distribution at a point. Concerning the fog issue one can hope
for greater vigilance on the part of the pilot in trying to more closely follow the taxiway
centerlights.

From report [9] we extract the values in Table A which gives the estimates η̂1−p and 95%
upper confidence bounds η̂U,1−p for the (1−p)-quantiles η1−p of the d distribution. The (1−p)-
quantile η1−p of the d distribution is that number which is exceeded by the proportion p of
all such d values. Specific values p of interest are p = 10−3, 10−4, . . . , 10−9. The separation
T would then have to exceed η1−p +W/2 in order to limit the collision risk to p.

Table A: (1− p)-Quantile Estimates and 95% Upper Bounds for the d Distribution

one-sided exceedance risk p

10−3 10−4 10−5 10−6 10−7 10−8 10−9

estimate 6.04 ft 8.19 ft 10.49 ft 12.97 ft 15.62 ft 18.47 ft 21.53 ft

95% upper bounds 6.26 ft 8.52 ft 10.95 ft 13.56 ft 16.36 ft 19.36 ft 22.58 ft

Instead of the unknown η1−p we use the estimates and 95% upper confidence bounds for
η1−p given in Table A. These can then be combined with various half wingspans W/2 to
arrive at threshold estimates and upper bounds η̂1−p +W/2 and η̂U,1−p+W/2 that should be
exceeded by the distance T from the taxiway centerline to the fixed object for the respectively
targeted exceedance risk p. The results are summarized in Tables B and C for ANC and
JFK, respectively. Note that consecutive rows for estimates and upper bounds differ by half
the wingspan increment (5 ft). The rows, although deriving from each other in this way, are
shown mainly for convenience.

The reason for separate tables for ANC and JFK results from the fact that the bias adjusted
deviations from JFK were divided by 1.097 in order to align their scale or spread to that
of the bias adjusted deviations from ANC before combining both data sets. Thus we have
to multiply threshold values from Table A by 1.097 to make them apply back to the JFK
situation.

Another back-adjustment that needs to be made is the adding in of biases that were removed
in order to render the deviations symmetric around zero. These biases, due to parallax issues
and the avoidance of taxiway centerlights, combined maximally to roughly .75 ft.

Thus, to arrive at the value 117.4 ft to the right of the 220 ft wingspan in Table C for JFK
one calculates (taking 6.04 from Table A) 6.04 × 1.097 + .75 + 220/2 = 117.4 ft. In the
calculation for Table B one omits the factor 1.097 in the calculation.
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Table B: Estimates and 95% Upper Confidence Bounds to be Exceeded by the
Required Separation T Between Taxiway Centerline and Object for ANC

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 96.8 98.9 101.2 103.7 106.4 109.2 112.3

190 101.8 103.9 106.2 108.7 111.4 114.2 117.3

200 106.8 108.9 111.2 113.7 116.4 119.2 122.3

210 111.8 113.9 116.2 118.7 121.4 124.2 127.3

220 116.8 118.9 121.2 123.7 126.4 129.2 132.3

230 121.8 123.9 126.2 128.7 131.4 134.2 137.3

240 126.8 128.9 131.2 133.7 136.4 139.2 142.3

250 131.8 133.9 136.2 138.7 141.4 144.2 147.3

260 136.8 138.9 141.2 143.7 146.4 149.2 152.3

270 141.8 143.9 146.2 148.7 151.4 154.2 157.3

280 146.8 148.9 151.2 153.7 156.4 159.2 162.3

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 97.0 99.3 101.7 104.3 107.1 110.1 113.3

190 102.0 104.3 106.7 109.3 112.1 115.1 118.3

200 107.0 109.3 111.7 114.3 117.1 120.1 123.3

210 112.0 114.3 116.7 119.3 122.1 125.1 128.3

220 117.0 119.3 121.7 124.3 127.1 130.1 133.3

230 122.0 124.3 126.7 129.3 132.1 135.1 138.3

240 127.0 129.3 131.7 134.3 137.1 140.1 143.3

250 132.0 134.3 136.7 139.3 142.1 145.1 148.3

260 137.0 139.3 141.7 144.3 147.1 150.1 153.3

270 142.0 144.3 146.7 149.3 152.1 155.1 158.3

280 147.0 149.3 151.7 154.3 157.1 160.1 163.3
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Table C: Estimates and 95% Upper Confidence Bounds to be Exceeded by the
Required Separation T Between Taxiway Centerline and Object for JFK

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 97.4 99.7 102.3 105.0 107.9 111.0 114.4

190 102.4 104.7 107.3 110.0 112.9 116.0 119.4

200 107.4 109.7 112.3 115.0 117.9 121.0 124.4

210 112.4 114.7 117.3 120.0 122.9 126.0 129.4

220 117.4 119.7 122.3 125.0 127.9 131.0 134.4

230 122.4 124.7 127.3 130.0 132.9 136.0 139.4

240 127.4 129.7 132.3 135.0 137.9 141.0 144.4

250 132.4 134.7 137.3 140.0 142.9 146.0 149.4

260 137.4 139.7 142.3 145.0 147.9 151.0 154.4

270 142.4 144.7 147.3 150.0 152.9 156.0 159.4

280 147.4 149.7 152.3 155.0 157.9 161.0 164.4

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 97.6 100.1 102.8 105.6 108.7 112.0 115.5

190 102.6 105.1 107.8 110.6 113.7 117.0 120.5

200 107.6 110.1 112.8 115.6 118.7 122.0 125.5

210 112.6 115.1 117.8 120.6 123.7 127.0 130.5

220 117.6 120.1 122.8 125.6 128.7 132.0 135.5

230 122.6 125.1 127.8 130.6 133.7 137.0 140.5

240 127.6 130.1 132.8 135.6 138.7 142.0 145.5

250 132.6 135.1 137.8 140.6 143.7 147.0 150.5

260 137.6 140.1 142.8 145.6 148.7 152.0 155.5

270 142.6 145.1 147.8 150.6 153.7 157.0 160.5

280 147.6 150.1 152.8 155.6 158.7 162.0 165.5
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Parallel Taxiway Centerline Separation for Wingtip to Wingtip Clearance

The corresponding wingtip to wingtip collision situation between two aircraft is illustrated
in Figure 2 which makes clear how the separation T between taxiway centerlines and the
average wingspan (W1 +W2)/2 interact with the respective deviations d1 and d2 of the two
aircraft from their respective taxiway centerlines. To avoid collision the combined deviations
need to satisfy the following criterion:

T >
W1 +W2

2
+ d1 + d2 .

From this criterion it is clear that high (1−p)-quantiles of the compounded deviations d1+d2

from both aircraft are of primary interest. The (1 − p)-quantile of d1 + d2 is that number
δ1−p which is exceeded by only a proportion p of all such compounded deviations d1 + d2.
Specific values p of interest are p = 10−3, 10−4, . . . , 10−9. The separation T would then have
to exceed δ1−p + (W1 +W2)/2 in order to limit the collision risk to p.

This study did not use the few observed instances at JFK where aircraft passed each other
at the same time as they passed the laser. This was done to avoid registration difficulties.
Although these cases might have given some evidence of possible avoidance bias, there were
too few of them to get a reasonable assessment of such an effect. Leaving them out from
the collision risk analysis we act conservatively, i.e., the possible bias would render the risk
smaller than indicated by the analysis of deviations for which such a bias would not have
been active. Two approaches were taken to deal with this sparsity or lack of direct data on
d1 + d2 for passing aircraft.

First Approach
The first approach followed the previous Schiphol taxiway deviation study [1] which used
the individual aircraft deviations by randomly generating combined deviation measurements
di + dj. This was done through random splitting of the sample of individual deviations
into two halves and random pairing of each deviation from the first half with one from the
second half, to obtain 6, 157 such pairs di + dj. For each set of such pairs the extreme
value extrapolation method from [7] was applied to the absolute values |di + dj| to obtain
estimates and 95% confidence bounds for the (1 − p)-quantiles of the d1 + d2 distribution
for p = 10−3, 10−4, . . . , 10−9. Using the absolute values |di + dj| was justified by the general
symmetry of the deviation histogram around zero, which entails similar symmetry for the
di + dj distribution. Thus a (1 − 2p)-quantile of the |di + dj| distribution is the same as a
(1− p)-quantile of the di + dj distribution.

To understand and correct for the random splitting and pairing effect this process was
repeated 500 times and a combined estimate and confidence bound was then settled on
in the tabulation of the results. We also investigated the effect of the variability arising
from the initial random sample of 12, 314 deviations by preceding each one of the previous
random splits and pairings by a bootstrap random sample of 12, 314 deviations taken with
replacement from the original deviation sample. However, it was found that the variation
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Figure 2: Separation Clearance Between Aircraft on Parallel Taxiways
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due to random splits and pairings was the main variability factor and that the answers
arising with the bootstrap sampling scheme were less conservative than just working with
the original sample. Presumably this is due to the dominant effect of the random splits and
pairings and also to a known deficiency of the bootstrap method when dealing with data
extremes, namely that a fair proportion of the bootstrap samples don’t contain the most
extreme deviations from the original deviation sample.

Second Approach
The second approach looked at all pairwise sums di + dj with 1 ≤ i < j ≤ 12, 314. There
are N = 75, 811, 141 such paired sums. The absolute values |di + dj| were then ordered from
smallest to largest and the top 1, 000 and 10, 000 were plotted against their respective tail
fraction rank order (1− .5)/N, (2− .5)/N, . . . (10, 000− .5)/N on a log scale. The resulting
plot showed very regular behavior (see Figure 17 on page 26) and a quadratic was fitted
by the method of least squares. This quadratic can then be used to estimate any of the
(1−p)-quantiles for p = 10−3, 10−4, . . . , 10−9. The advantage of this second approach is that
for p = 10−6 one is within the data range of the calculated |di + dj| values because of the
size of N = 75, 811, 141. Even for p = 10−7 we are still within the range but here we rely on
the smooth behavior of the fitted quadratic and ignore the fluttering behavior of the very
extreme |di + dj| values.
There was not much difference in the fitted quadratics between using the 1, 000 or 10, 000 top
|di+dj| values. For the subsequent bootstrap process we used the top 1000 values of |di+dj|
in the fitting. In this bootstrap approach we recalculated the above quantile estimates, as
obtained from the fitted quadratic, for samples of size 12, 314 drawn with replacement from
the original deviation sample. This provides some sense of the variability/uncertainty of
the original quantile estimates and allows us to calculate confidence bounds using bootstrap
methodology.

Synthesis
It turned out that the quantile estimates/confidence bounds obtained from the first approach
were somewhat higher than those obtained under the second approach. When comparing
confidence bounds for the two approaches the worst case difference was .55 ft. In a sense the
two approaches confirm each other reasonably well. One cannot expect same results from
the same data when using different estimation techniques. Note that the second approach
did not involve the use of the extreme value extrapolation method from [7]. We opted to
stay conservatively with the results from the first approach. These quantile estimates and
upper bounds are shown in Table D.

These quantile estimates and upper bounds, denoted by δ̂1−p and δ̂U,1−p respectively, can then
be combined with various average wingspans (W1 +W2)/2 to arrive at threshold estimates
and upper bounds δ̂1−p +(W1 +W2)/2 and δ̂U,1−p +(W1 +W2)/2 that should be exceeded by
the taxiway separation distance T for the respectively targeted exceedance risk p. This was
tailored to both the ANC and the JFK situation. The reason for this distinct treatment is
the same as was explained previously.
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Table D: (1− p)-Quantile Estimates and 95% Upper Bounds for the d1 + d2 Distribution

one-sided exceedance risk p

10−3 10−4 10−5 10−6 10−7 10−8 10−9

estimate 7.90 ft 10.09 ft 12.12 ft 14.35 ft 16.29 ft 18.13 ft 19.84 ft

95% upper bounds 7.91 ft 10.14 ft 12.22 ft 14.54 ft 16.58 ft 18.55 ft 20.51 ft

As before another back-adjustment needs to be made for the biases that were removed in
order to render the deviations symmetric around zero. These biases, due to parallax issues
and the avoidance of taxiway centerlights, combined maximally to roughly .75 ft. Even
though in certain situations such biases for two passing aircraft could cancel out to some
extent we decided again to conservatively add in this bias for both deviations in d1 +d2, i.e.,
we added 1.5 ft to the (rescaled by 1.097) estimates/bounds in Table D before adding the
resulting back-adjusted estimates/bounds to the average wingspan. These results are shown
in Tables E and F for ANC and JFK, respectively.

For comparison sake we also reproduce the relevant table from [1] as Table G. These results
are given only for the available risks of p = 10−6, . . . , 10−9. The separation thresholds T
are remarkably close in Tables E-G even though there are several reasons that may explain
the existing differences. These are detailed in the report. We prefer to emphasize here the
closeness in relative terms.

In effect, the Tables E-G provide some insight as to how far these results are generalizable.
Clearly the results from the three airports are different, about 3− 4 ft of each other, but in
terms of the scale of the numbers given in Tables E-G this discrepancy seems small. This
closeness of results from the three studies is illustrated in Figure 3 which shows the Code E
Separation Standard with respect to the required separation T for a p = 10−7 collision risk.
The actual shown deviations of both aircraft (7 ft and 6 ft) are arbitrary and one should keep
in mind that a 13 ft combined deviation d1+d2 can come about in many ways, e.g., 2 ft plus
11 ft, 4 ft plus 9 ft, −4 ft plus 17 ft, etc. Recall that a combined p = 10−7 deviation would
be 16.58 ft with 95% confidence (according to Table D). The Code E Separation Standard
is much wider than that required by any of the three study results. In fact, the illustrated
required separation of 232.7 ft for a collision risk p ≤ 10−7 (with 95% confidence) is still
almost 30 ft less than then Code E Separation Standard of 262.5 ft.

With measurements from other airports we may see further differences, but not very much
more than observed here. We do not understand all the reason behind such differences. The
difference in deviation scale at ANC and JFK, speculated to be due to differing offsets of
centerline lights from the taxiway centerline, invites further corroberation. At Schiphol the
asymmetry of the deviations would ask for some clarification.
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Figure 3: Separation Clearance Between Aircraft on Parallel Taxiways
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Table E: Required Separation T Between Taxiway Centerlines for ANC

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 189.4 191.6 193.8 195.9 197.8 199.7 201.4

190 199.4 201.6 203.8 205.9 207.8 209.7 211.4

200 209.4 211.6 213.8 215.9 217.8 219.7 221.4

210 219.4 221.6 223.8 225.9 227.8 229.7 231.4

220 229.4 231.6 233.8 235.9 237.8 239.7 241.4

230 239.4 241.6 243.8 245.9 247.8 249.7 251.4

240 249.4 251.6 253.8 255.9 257.8 259.7 261.4

250 259.4 261.6 263.8 265.9 267.8 269.7 271.4

260 269.4 271.6 273.8 275.9 277.8 279.7 281.4

270 279.4 281.6 283.8 285.9 287.8 289.7 291.4

280 289.4 291.8 293.8 295.9 297.8 299.7 301.4

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 189.4 191.7 193.9 196.1 198.1 200.1 202.1

190 199.4 201.7 203.9 206.1 208.1 210.1 212.1

200 209.4 211.7 213.9 216.1 218.1 220.1 222.1

210 219.4 221.7 223.9 226.1 228.1 230.1 232.1

220 229.4 231.7 233.9 236.1 238.1 240.1 242.1

230 239.4 241.7 243.9 246.1 248.1 250.1 252.1

240 249.4 251.7 253.9 256.1 258.1 260.1 262.1

250 259.4 261.7 263.9 266.1 268.1 270.1 272.1

260 269.4 271.7 273.9 276.1 278.1 280.1 282.1

270 279.4 281.7 283.9 286.1 288.1 290.1 292.1

280 289.4 291.7 293.9 296.1 298.1 300.1 302.1
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Table F: Required Separation T Between Taxiway Centerlines for JFK

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 190.2 192.6 195.0 197.2 199.4 201.4 203.3

190 200.2 202.6 205.0 207.2 209.4 211.4 213.3

200 210.2 212.6 215.0 217.2 219.4 221.4 223.3

210 220.2 222.6 225.0 227.2 229.4 231.4 233.3

220 230.2 232.6 235.0 237.2 239.4 241.4 243.3

230 240.2 242.6 245.0 247.2 249.4 251.4 253.3

240 250.2 252.6 255.0 257.2 259.4 261.4 263.3

250 260.2 262.6 265.0 267.2 269.4 271.4 273.3

260 270.2 272.6 275.0 277.2 279.4 281.4 283.3

270 280.2 282.6 285.0 287.2 289.4 291.4 293.3

280 290.2 292.6 295.0 297.2 299.4 301.4 303.3

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 190.2 192.7 195.1 197.5 199.7 201.8 204.0

190 200.2 202.7 205.1 207.5 209.7 211.8 214.0

200 210.2 212.7 215.1 217.5 219.7 221.8 224.0

210 220.2 222.7 225.1 227.5 229.7 231.8 234.0

220 230.2 232.7 235.1 237.5 239.7 241.8 244.0

230 240.2 242.7 245.1 247.5 249.7 251.8 254.0

240 250.2 252.7 255.1 257.5 259.7 261.8 264.0

250 260.2 262.7 265.1 267.5 269.7 271.8 274.0

260 270.2 272.7 275.1 277.5 279.7 281.8 284.0

270 280.2 282.7 285.1 287.5 289.7 291.8 294.0

280 290.2 292.7 295.1 297.5 299.7 301.8 304.0
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Table G: Required Separation T Between Taxiway Centerlines for Schiphol

Estimate ≤ T (ft) 90% Upper Bound ≤ T (ft)

collision risk p collision risk p

wingspan (ft) 10−6 10−7 10−8 10−9 10−6 10−7 10−8 10−9

180 198.8 200.7 202.4 204.1 200.5 202.6 204.6 206.6

190 208.8 210.7 212.4 214.1 210.5 212.6 214.6 216.6

200 218.8 220.7 222.4 224.1 220.5 222.6 224.6 226.6

210 228.8 230.7 232.4 234.1 230.5 232.6 234.6 236.6

220 238.8 240.7 242.4 244.1 240.5 242.6 244.6 246.6

230 248.8 250.7 252.4 254.1 250.5 252.6 254.6 256.6

240 258.8 260.7 262.4 264.1 260.5 262.6 264.6 266.6

250 268.8 270.7 272.4 274.1 270.5 272.6 274.6 276.6

260 278.8 280.7 282.4 284.1 280.5 282.6 284.6 286.6

270 288.8 290.7 292.4 294.1 290.5 292.6 294.6 296.6

280 298.8 300.7 302.4 304.1 300.5 302.6 304.6 306.6
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1 Problem Statement, Data Description, and Approach

This report deals with the risk of collision between the wingtip of a taxiing aircraft and an
object to the side of a taxiway and with the risk of wingtip to wingtip collision between
two passing aircraft on parallel taxiways. Of particular concern is the separation distance T
between taxiway centerline and object or between the centerlines of the parallel taxiways in
relation to any tolerated risk level p.

This risk analysis for wingtip to object clearance will be based directly on the extreme
deviation behavior of taxiing 747 aircraft as analyzed in reports [8] and [9] and could have
been done there already. Instead it is included here in conjunction with the wingtip to
wingtip collison risk analysis.

Since a wingtip to wingtip collision event can only occur at a specific point, namely when the
wingtips of both aircraft pass each other, we are dealing with a pointwise risk as opposed to
a lengthwise risk. The latter is encountered when dealing with the risk of an aircraft veering
off a taxiway over a certain taxiway segment. Such veering off is determined by the maximum
absolute deviation of the aircraft over the full taxiway segment under consideration. This risk
can not yet be addressed in a satisfactory manner with the currently collected data since these
were obtained at fixed laser stations along the respective taxiways. These measurements do
not represent the distribution of maximum deviations over a taxiway segment.

Concerning the wingtip to object clearance one may raise the same concerns as with assessing
the risk of veering off the taxiway. Much will depend on the nature of the object. If the
object consists of a building that runs parallel to the whole length of the straight taxiway,
there would be little difference in the two situations, except that the pilot may be more
aware of the building than of the taxiway edge. If the object presents a rather short front
to the taxiway one may neglect the concern of lengthwise risk and treat this as a pointwise
deviation issue. If the object is a building with a lengthwise exposure surface one may also
argue that the first encountered point of such a building could serve as the point for analysis
since any further exposure to the building should induce the pilot to move away from the
building rather than towards it, see Figure 1. This argument will fail of course if the building
is hidden in fog. However, in this situation the pilot may follow the centerline lights more
closely than otherwise, which would negate that concern. Thus in the main we rely on the
relatively short lengthwise exposure to the object so that we may treat this as a pointwise
risk.

The data underlying the risk analyses come from collection efforts at two airports. At
New York’s John F. Kennedy International Airport (JFK) 747 taxiway deviation data
were collected from 6/24/1999 to 2/17/2000 at two laser locations for each of two paral-
lel 75 ft straight taxiway segments with shoulder, called ALPHA and BRAVO. Similar data
were collected at Anchorage International Airport (ANC) from 9/24/2000 to 9/27/2001 at
two straight (non-parallel) 75 ft straight taxiway segments with shoulder, called KILO and
ROMEO.
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Although these data sets were screened to capture mostly 747 deviations there is the possi-
bility that other, similarly large aircraft, e.g., L-1011, A-330, A-340, 777, MD-11 and DC-10,
were included. This possibility is stronger for the JFK data than for the ANC data. For the
latter we expect most deviations to be from 747 aircraft.

The extreme taxiway deviation behavior at the most relevant main gear location was analyzed
in two previous reports [8] and [9]. For more details on the data and how they were treated
we refer to these reports. In these reports the pooling of data from the two taxiways for each
airport and from different headings on each taxiway was justified through bias elimination
and rescaling. Two biases were identified and corrected for. The first of these biases is
thought to arise from parallax issues due to the pilot’s offset position relative to the aircraft
centerline. This bias is of opposite sign for the two headings on each taxiway. The second
bias was attributed to the taxiway centerlights which pilots tend to avoid. These centerlights
run parallel to the taxiway centerline at some offset. This bias has the same sign for either
heading.

The distributions of the bias adjusted ANC deviations and the bias adjusted JFK deviations
(after dividing the latter by a factor of 1.097) looked so similar that their pooling was justified.
The 10% wider scatter in the bias adjusted JFK deviations could be due to the fact that
at JFK the centerline lights are offset by 22 inches from the centerline while at ANC the
corresponding offset is 12 inches. This wider offset could cause wider aircraft meandering
and thus more dispersed deviations at JFK.

The pooled adjusted deviations from both airports were found to be symmetrically dis-
tributed around zero. Hence it was possible to use the absolute deviations in gauging ex-
ceedance risks. This increases the sample size by a factor of two since extremes from both
sides of the sample come to bear on the issue. Figure 4 shows a histogram of the pooled ad-
justed deviations. As indicated, there are n = 12, 314 such deviations, of which n1 = 2, 518
and n2 = 9, 796 came from the JFK and ANC data sets, respectively.

We proceed by first dealing with the wingtip to object clearance risk assessment since that is a
direct application of previous analysis of the pooled data. This is followed by two approaches
of dealing with the risk of wingtip to wingtip collision. For this problem almost no direct
data was available, i.e., deviations from taxiway centerline were hardly ever measured while
aircraft were passing each other. To deal with this we developed two proxy approaches, one
of which closely parallels that of the Schiphol taxiway deviation study [1] which used the
extreme value methodology in [7]. The other approach estimates the convolution distribution
of the combined deviations d1 + d2 directly and interpolates/extrapolates to the relevant
(1−p)-quantiles of this distribution via a fitted quadratic on a log-scale for p. For this latter
approach confidence bounds were obtained via the bootstrap method. The results from both
approaches are quite comparable and complement each other.
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Figure 4: Pooled Adjusted JFK and ANC Deviations
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2 Separation Between Object and Centerline of Taxiway

Figure 1 on page iii shows that the criterion for clearance between a fixed object and the
wingtip of a taxiing aircraft is

T >
W

2
+ d ,

where T is the closest distance between the taxiway centerline and the fixed object, W is
the wingspan of the taxiing aircraft, and d is the deviation of the aircraft from the taxiway
centerline.

In order to control the risk p of collision we need to have T > W/2 + η1−p where η1−p is the
(1− p)-quantile of the d-distribution, i.e., it is that value which is exceeded by a proportion
p of all d-values in the d-distribution. Thus T > W/2 + η1−p means that in at most a
proportion p of all cases we may violate the clearance criterion. As values of interest for p
we consider p = 10−3, 10−4, . . . , 10−9.

Instead of the unknown η1−p we have estimates and 95% upper confidence bounds for η1−p,
denoted by η̂1−p and η̂U,1−p, respectively. They are presented in Table 1. The values in
Table 1 were extracted from report [9]. The intent of 95% upper confidence bounds is to
provide some conservative allowance for the sampling variability which causes variability in
the estimates, i.e., different data sets collected under similar conditions would have resulted
in different estimates. Such 95% upper confidence bounds are meant to exceed the target
η1−p with probability .95 while the estimates typically fall below and above η1−p with equal
chance .5.

These estimates and upper confidence bounds can then be combined with various half
wingspans W/2 to arrive at threshold estimates and upper bounds η̂1−p +W/2 and η̂U,1−p +
W/2 that should be exceeded by the distance T from the taxiway centerline to the fixed ob-
ject for the respectively targeted exceedance risk p. The results are summarized in Tables 2
and 3 for ANC and JFK, respectively.

Table 1: (1− p)-Quantile Estimates and 95% Upper Bounds for the d Distribution

one-sided exceedance risk p

10−3 10−4 10−5 10−6 10−7 10−8 10−9

estimate 6.04 ft 8.19 ft 10.49 ft 12.97 ft 15.62 ft 18.47 ft 21.53 ft

95% upper bounds 6.26 ft 8.52 ft 10.95 ft 13.56 ft 16.36 ft 19.36 ft 22.58 ft
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Table 2: Estimates and 95% Upper Confidence Bounds to be Exceeded by the
Required Separation T Between Taxiway Centerline and Object for ANC

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 96.8 98.9 101.2 103.7 106.4 109.2 112.3

190 101.8 103.9 106.2 108.7 111.4 114.2 117.3

200 106.8 108.9 111.2 113.7 116.4 119.2 122.3

210 111.8 113.9 116.2 118.7 121.4 124.2 127.3

220 116.8 118.9 121.2 123.7 126.4 129.2 132.3

230 121.8 123.9 126.2 128.7 131.4 134.2 137.3

240 126.8 128.9 131.2 133.7 136.4 139.2 142.3

250 131.8 133.9 136.2 138.7 141.4 144.2 147.3

260 136.8 138.9 141.2 143.7 146.4 149.2 152.3

270 141.8 143.9 146.2 148.7 151.4 154.2 157.3

280 146.8 148.9 151.2 153.7 156.4 159.2 162.3

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 97.0 99.3 101.7 104.3 107.1 110.1 113.3

190 102.0 104.3 106.7 109.3 112.1 115.1 118.3

200 107.0 109.3 111.7 114.3 117.1 120.1 123.3

210 112.0 114.3 116.7 119.3 122.1 125.1 128.3

220 117.0 119.3 121.7 124.3 127.1 130.1 133.3

230 122.0 124.3 126.7 129.3 132.1 135.1 138.3

240 127.0 129.3 131.7 134.3 137.1 140.1 143.3

250 132.0 134.3 136.7 139.3 142.1 145.1 148.3

260 137.0 139.3 141.7 144.3 147.1 150.1 153.3

270 142.0 144.3 146.7 149.3 152.1 155.1 158.3

280 147.0 149.3 151.7 154.3 157.1 160.1 163.3
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Table 3: Estimates and 95% Upper Confidence Bounds to be Exceeded by the
Required Separation T Between Taxiway Centerline and Object for JFK

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 97.4 99.7 102.3 105.0 107.9 111.0 114.4

190 102.4 104.7 107.3 110.0 112.9 116.0 119.4

200 107.4 109.7 112.3 115.0 117.9 121.0 124.4

210 112.4 114.7 117.3 120.0 122.9 126.0 129.4

220 117.4 119.7 122.3 125.0 127.9 131.0 134.4

230 122.4 124.7 127.3 130.0 132.9 136.0 139.4

240 127.4 129.7 132.3 135.0 137.9 141.0 144.4

250 132.4 134.7 137.3 140.0 142.9 146.0 149.4

260 137.4 139.7 142.3 145.0 147.9 151.0 154.4

270 142.4 144.7 147.3 150.0 152.9 156.0 159.4

280 147.4 149.7 152.3 155.0 157.9 161.0 164.4

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 97.6 100.1 102.8 105.6 108.7 112.0 115.5

190 102.6 105.1 107.8 110.6 113.7 117.0 120.5

200 107.6 110.1 112.8 115.6 118.7 122.0 125.5

210 112.6 115.1 117.8 120.6 123.7 127.0 130.5

220 117.6 120.1 122.8 125.6 128.7 132.0 135.5

230 122.6 125.1 127.8 130.6 133.7 137.0 140.5

240 127.6 130.1 132.8 135.6 138.7 142.0 145.5

250 132.6 135.1 137.8 140.6 143.7 147.0 150.5

260 137.6 140.1 142.8 145.6 148.7 152.0 155.5

270 142.6 145.1 147.8 150.6 153.7 157.0 160.5

280 147.6 150.1 152.8 155.6 158.7 162.0 165.5
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The reason for separate tables for ANC and JFK is the fact that before being able to combine
the bias adjusted data from ANC and JFK we had to divide the deviations from JFK by a
factor of 1.097. Thus we have to multiply threshold values from Table 1 by 1.097 to make
them apply back to the JFK situation. Another back-adjustment that needs to be made
is the adding in of biases that were removed in order to render the deviations symmetric
around zero. These biases, due to parallax issues and the avoidance of taxiway centerlights,
combined maximally to roughly .75 ft.

Thus, to arrive at the value 117.4 ft to the right of the 220 ft wingspan in Table 3 for JFK
one calculates (taking 6.04 from Table 1) 6.04 × 1.097 + .75 + 220/2 = 117.4 ft. In the
calculation for Table 2 one omits the factor 1.097 in the calculation.

3 Separation of Parallel Taxiways

When aircraft pass each other on parallel taxiways (in same or opposite heading) there is the
risk of wing tip collision due to sufficiently extreme deviations of either or both aircraft from
their respective taxiway centerlines. Figure 2 on page viii illustrates this situation and sets
the notation as it will be used in the following discussion. Much of the approach taken here
parallels that of Booker [1] who addressed the same issue using data from Schiphol Airport
near Amsterdam.

Since such a collision event can only occur at a specific point, namely when the wingtips of
both aircraft pass each other, we are dealing with a pointwise risk as opposed to a lengthwise
risk. The distinction between pointwise and lengthwise risk was discussed previously.

The reason for treating the wing tip collision issue as a pointwise risk is as follows. The
maximum deviation along the taxiway segment does not matter since such maximum devia-
tions for aircraft 1 or 2 are most likely not occurring at the time when the aircraft pass each
other. The time or point of passing should have no connection with the actual deviations
taking place at the point. Thus it makes sense to fix the point of passing as the point when
deviation measurements are taken. Such a point of passing could be anywhere (randomly)
along the taxiway. The deviations measured at these random locations will have the same
distributional characteristics as deviation measurements taken when passing a fixed laser.

The underlying assumption is that the distribution of deviations from the taxiway centerline
is the same at each fixed location along the taxiway. Measuring all the deviations at one
location should produce the same sample (distributionally) as taking each measurement at
a randomly chosen location, determined by the point of the two aircaft passing each other.

Unfortunately it is not possible or practical to collect deviation data on passing aircraft at
such randomly set up laser location as suggested above. Actually, such data might show
possible avoidance behavior of passing aircraft, i.e., if deviations from the centerline occur
they are more likely in opposite direction as opposed to towards each other when the aircraft
pass each other. We realize that this possibility would argue against our previously stipulated
independence of passing location and aircraft deviation from taxiway centerline. However,
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ignoring this possible avoidance effect in the approaches followed below should err on the
conservative side, i.e., collision risks calculated under the assumed independence between
deviations and passing location should be higher than those that might take the avoidance
effect into account in some way, although how to achieve the latter is not clear.

Figure 2 on page viii shows that the quantity d1 + d2 is the varying aspect that figures in
the separation analysis since the clearance C between wingtips can be expressed as

C = T − W1 +W2

2
− (d1 + d2) , (1)

where T denotes the distance between the parallel taxiway centerlines, W1 and W2 denote
the wingspans of the passing aircraft and d1 and d2 denote the aircraft deviations from the
taxiway centerlines and are viewed as positive when measured in the direction towards the
other aircraft.

As far as the distribution of C is concerned the sign of the deviations d1 and d2 is immaterial
since we established that the distribution of the pooled adjusted deviations can be considered
as symmetric around zero. Thus the values d1+d2 have again a distribution that is symmetric
around zero.

According to the above clearance criterion C, large positive sums d1+d2 are relevant because
a collision could occur (with equal wing height) when C < 0, or T − (W1 +W2)/2 < d1 + d2.
Since the distribution of d1 + d2 is symmetric around zero we can again use the distribution
of absolute deviations |d1 + d2| in assessing any exceedance risks, i.e., we can use the fact

P (|d1 + d2| > x)

2
=
P (d1 + d2 > x) + P (d1 + d2 < −x)

2
= P (d1 + d2 > x) for x > 0.

This allows us to use twice as many sample extremes in extrapolating to risk levels beyond
the observed data.

4 Analysis Based on Random Splitting of the Deviation Sample

In view of the lack of direct wingtip separation data of passing aircraft we use as proxy the
bias adjusted ANC and JFK deviation data (also rescaled in the case of JFK) and form sums
of independent deviations d1 + d2 from which the clearance C derives according to equation
(1). By splitting the original n = 12, 314 deviations randomly into two halves and randomly
pairing exactly one di from the first half with one dj from the second half we can obtain
m = 6, 157 such independent sums which we then analyze in terms of their absolute values
as indicated above.

The problem with this approach is that the forming of the m = 6, 157 sums of pairs from
the original sample of deviations is subject to the random splitting and random pairing of
the n = 12, 314 deviations. Thus one could get many possible answers in the extrapolation
from all such samples of randomly generated sums. Which such estimate do we take?

8
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This situation is somewhat similar to the situation where we don’t have a sample but can
generate any number M of samples of size m from a “known” population. For each such
sample we could calculate an estimate θ̂ for the target θ that describes a particular aspect of
the population (mean,variance, quantile, etc.). It is assumed that such estimates are reason-
able, namely scatter in some form around the target θ. One could then take the average or
median of all these estimates θ̂1, . . . , θ̂M . Depending on the bias properties of these estimates
one should get a fairly accurate view of the target θ. In a way (by sampling repeatedly from
a known population, namely M times a sample of size m) one takes advantage of the fact
that one already knows the population and thus indirectly θ. Taking the mean or median
of a large number M of such estimates should thus provide a fairly accurate estimate of the
“unknown” θ. This is as though one estimates θ based on M ·m observations, a very large
number.

Our situation at hand is slightly modified from the previous setup. In our case we do not
take a new sample of deviations each time, we are fixed on the given sample of n = 12, 314
deviations. However, we can do the splitting and sum-forming process randomly many times
over. This way we capture the random aspects of the sum-forming process and can gauge
the variability of any quantile extrapolation estimate that is due to that random aspect.
Following the bootstrap approach we can go one step further and also emulate the sampling
variability in the original sample of n = 12, 314 deviations. This consists of taking a random
sample with replacement from these n = 12, 314 deviations and then use this random sample
as the one that gets randomly split to form the m = 6, 157 sums of pairs, leading to our
first estimate of the extrapolated quantile of interest. This process (random sample with
replacement from these n = 12, 314 deviations and randomly splitting it to get m = 6, 157
sums of pairs) can be repeated many times and thus we ultimately can get as many estimates
of the extrapolated quantile of interest, say θ̂1, . . . , θ̂M .

Figures 5-7 show via box plots the results from randomly splitting the same original sample
of n = 12, 314 deviations into two halves and forming m = 6, 157 sums of pairs. This split
was performed 500 times and for each set of m = 6, 157 sums we applied the extrapolation
method in [7] for estimating the (1−p)-quantile of the distribution of absolute sums |d1+d2|
for p = 2 · 10−i, i = 3, . . . , 9 (note that Figures 5-7 only show the results for i = 4, . . . , 9).
These quantiles are the same as the corresponding (1−p)-quantiles of the distribution of sums
d1+d2 for p = 10−i, i = 3, . . . , 9. This was done for each of the 500 absolute sum samples of
size m = 6, 157 and for each of the following tail depths k = 50, 100, 150, 200, . . . , 1950, 2000.
By tail depth we mean that the k most extreme absolute sums were used in the extrapolation
step.

The midline of each box plot (see Chambers et. al. [2]) gives the median of these 500 estimates
for the respective (1−p)-quantile of the absolute sum distribution. The bottom and top edge
of each box signify the lower and upper quartile of the 500 estimates. From the box ends
extend dashed lines to the so called adjacent values. The upper adjacent value is defined
to be the largest of the 500 estimates that is less than or equal to the upper quartile plus
1.5 times the interquartile range. Correspondingly, the lower adjacent value is defined to be
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the lowest of the 500 estimates that is greater than or equal to the lower quartile minus 1.5
times the interquartile range. The interquartile range is the vertical width of the box. Any
observations beyond the adjacent values are shown individually.

Clearly these box plots exhibit a fair amount of scatter, i.e., much of the variability of the
extrapolated quantile estimates can be attributed to the random splitting and pairing for
forming the m = 6, 157 absolute sums for each of the 500 samples. Also, note that the
scatter decreases as k increases. At the same time the boxes tend to drift down. The effect
of this drift is made clearer by the horizontal line drawn across all box plots. The level of
this line is roughly near the point where the medians peak. The sole purpose of these lines is
to indicate the drift. This clearly shows the effect of the choice of k. The more extremes we
choose for extrapolation the less variability we have in the estimates. At the same time the
downward bias from the center part of the absolute sum data sample is felt more strongly.

Since each of the estimates is by design to have a 50% chance of falling above (or below)
its intended target it is reasonable to choose the median of these 500 estimates as the
ultimate choice among the scatter of estimates for each k. The respective choices of k =
900, 450, 400, 250, 250, 250, 250 appear to be reasonable values to focus on for p = 2·10−i, i =
3, . . . , 9 since they seem to indicate the start of the general downward trend. The resulting
estimate is shown in each respective plot in the upper right corner below the given value of
p. The significance of the combined 95% upper bound below it will be addressed later.

We point out that the 500 estimates are not independent of each other since the same sample
was split each time. However, the dependencies between the samples should be very mild and
one can expect the median to have the usual reasonable estimation properties. Conditional
on the original sample of 12, 314 deviations the 500 estimates are independent of each other.

Figures 8-10 repeat the representation of Figures 5-7, but this time by first randomly choosing
a bootstrap sample with replacement from the original sample of n = 12, 314 deviations and
then randomly splitting it to get 6, 157 sums. From these samples of size 6, 157 we again
calculate the quantile estimates. This process is repeated 500 times. Thus the resulting
500 estimates not only capture the variability of the sample splitting and the absolute sum
formation but also to some extent the sampling variation that led to the original deviation
sample, i.e., we sample from the “population” given by the histogram in Figure 4 on page 3.
This histogram should be a reasonable representation of the true deviation population from
which the original deviation sample was drawn.

Comparing the box plots from Figures 5-7 with the corresponding ones from Figures 8-10
one sees a slightly wider scatter in the box plots of Figures 8-10. However, it seems clear
that most of the added scatter is small compared to the original scatter attributed to the
random splitting and absolute sum forming process. The chosen estimates are slightly lower
in Figures 8-10 than the corresponding ones from Figures 5-7. This may be due to a small
downward bias arising from some bootstrap troubles with extremes as is discussed below.
For practical purposes this seems to be of little consequence.

We are aware that resampling from the original sample of n = 12, 314 deviations will not
be fully representative of the very extreme value behavior. For one, there is no possibility
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Figure 5: The Choice of k (500 random splits, without bootstrap)
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Figure 6: The Choice of k (500 random splits, without bootstrap)
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Figure 7: The Choice of k (500 random splits, without bootstrap)
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Figure 8: The Choice of k (500 random splits, with bootstrap)
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Figure 9: The Choice of k (500 random splits, with bootstrap)
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Figure 10: The Choice of k (500 random splits, with bootstrap)
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of getting observations more extreme than the ones in the original sample. Also, some of
the resamples may not even contain some of the very extremes of the original sample. This
is known to cause trouble with the bootstrap method when using just the very extremes to
estimate distribution end points. However, our extrapolation method downplays the effect
of these very extremes by using a weighted least squares procedure on the k most extreme
observed absolute sums.

It also appears that k = 650 might have been a reasonable choice for p = 2 · 10−6 and
p = 2 · 10−7. However, we chose to stay with a common choice of k = 250 for p = 2 · 10−i,
for i = 6, 7, 8, 9 since it seems to be reasonable for all four of these quantiles. The effect on
the actual median would have been minimal either way.

Figures 11-13 and 14-16 repeat the representation of Figures 5-7 and 8-10, but this time
in terms of the 95% upper confidence bounds for the respective (1 − p)-quantiles. These
bounds are generally higher and more scattered than the estimates as is to be expected. It
is not immediatley obvious which one of these 500 upper confidence bounds to choose as
final answer. The median of these 500 upper bounds looks quite attractive but its actual
confidence level is no longer .95 since only 5% of the actual upper bounds are expected to
fall below their target. From that one can calculate the chance of the median upper bound
falling below the same target as

γ =
500∑

i=251

(
500

i

)
.05i.95500−i = 10−421 ,

i.e., we would basically have a 100% upper confidence bound when using the median. A way
of choosing among these 500 upper confidence bounds that maintains the 95% confidence
level (approximately) is to sort these 500 upper bounds from smallest to largest and take the
34th smallest of them as a combined 95% upper bound for the (1−p)-quantile. The rationale
for this is given in Appendix A. These combined 95% upper confidence bounds show the
peculiar behavior that they are below the corresponding combined estimates. This can be
seen when comapring the “estimate” values in the upper right corner of the plots in Figures 5-
10 with the corresponding values of the “combined 95% upper bound” in Figures 11-16. This
phenomenon is not particular to the estimation/confidence bound procedure at hand as is
illustrated with a different example in Appendix A.

For this reason we use a different method of obtaining 95% upper confidence bounds based
on the sorted 500 estimates, i.e., we take the 269th smallest of those 500 estimates as our
95% upper confidence bound. These are shown in Figures 5-7 and 8-10 in the upper right
corner of each plot and are labeled as “combined 95% upper bound.” The rationale for this
is again given in Appendix A.
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Figure 11: The Choice of k (500 random splits, without bootstrap)
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Figure 12: The Choice of k (500 random splits, without bootstrap)
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Figure 13: The Choice of k (500 random splits, without bootstrap)

50 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950

10
15

20
25

30
35

40

k

95
%

 u
pp

er
 b

ou
nd

 fo
r(

1−
p)

−
qu

an
til

e 
of

  d
1

+
d 2

p = 2e−8

estimate = 19.49  at k =  250
combined 95% upper bound = 13.44  at k =  250

50 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950

10
15

20
25

30
35

40

k

95
%

 u
pp

er
 b

ou
nd

 fo
r(

1−
p)

−
qu

an
til

e 
of

  d
1

+
d 2

p = 2e−9

estimate = 21.37  at k =  250
combined 95% upper bound = 13.86  at k =  250

20



FAA/Boeing Cooperative Research and Development Agreement 01-CRDA-0164

Figure 14: The Choice of k (500 random splits, with bootstrap)
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Figure 15: The Choice of k (500 random splits, with bootstrap)
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Figure 16: The Choice of k (500 random splits, with bootstrap)
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Table 4: (1− p)-Quantile Estimates and 95% Upper Bounds for the d1 + d2 Distribution

Based on Random Splitting of Deviation Sample

one-sided exceedance risk p

10−3 10−4 10−5 10−6 10−7 10−8 10−9

estimate 7.90 ft 10.09 ft 12.12 ft 14.35 ft 16.29 ft 18.13 ft 19.84 ft

95% upper bounds 7.91 ft 10.14 ft 12.22 ft 14.54 ft 16.58 ft 18.55 ft 20.51 ft

When comparing the estimates or 95% upper confidence bounds for the same (1−p)-quantile
obtained with just random splitting of the same original deviation sample (without resam-
pling from that sample first) with those that also incorporate the sampling variation from
the original deviation sample one sees that the former results come out slightly higher (more
conservative) than the latter. This may seem paradoxical in view of the fact that the second
method (with resampling) compounds two forms of variation, namely the sampling variation
of the deviations and the sampling variation of forming the paired sums. This paradox may
have its explanation partly in the dominance of the variation arising from the random split-
ting and pairing and partly in the earlier discussed problem, namely that a good proportion
of such resamples may miss some of the extremes of the original sample. For that reason
we opted to use the more conservative numbers which are summarized in Table 4. We point
out that the medians of the 95% upper bounds are not much higher (.43− .89 ft) than the
combined 95% upper bounds presented in Table 4. This small discrepancy and the fact that
the medians have practically 100% coverage is reassuring support for the values in Table 4.

5 Using the Distribution of All Absolute Sums |di + dj|
A more direct way of estimating the distribution function of the convolution distribution is
to use all pairwise absolute sums |di + dj| with 1 ≤ i < j ≤ n = 12, 314 and study their
distribution. For n = 12, 314 there are N = 75, 811, 141 such pairs (di, dj) with i < j for
which to form such absolute sums. However, we point out that these values of |di + dj| are
not independent of each other since many pairs share a common di. Hence it is not as though
we have a random sample of size N from the |d1 + d2| distribution.
We can estimate the cumulative distribution function G(t) = P (|di+dj| ≤ t) of this |di+dj|
distribution using the following unbiased estimator

Ĝn(t) =
1(
n
2

) ∑
1≤i<j≤n

I[|di+dj |≤t]

where IA = 1 whenever the statement A is true and IA = 0 otherwise.
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We calculated all such absolute sums |di + dj| and sorted them from smallest to largest. We
then plotted these values against respective tail fractions p� on a log scale. If B� is the �th

largest of these N absolute sums |di + dj| then the corresponding tail fraction exceeding this
�th largest value is roughly (� − .5)/N . When several of these absolute sums |di + dj| are
tied at a common value one would count through them and not assign a common value of �
to that value. On average it will not make much difference whether one does this or uses a
more refined method.

Since N is so large one can see with actual data how far out such absolute sums |di + dj|
can be for fairly small values of (� − .5)/N . We plotted the 10, 000 most extreme values of
|di + dj| against their respective exceedance tail fraction on a logarithmic scale as shown in
Figure 17. The behavior appears to be quite smooth although not quite linear.

We fitted a quadratic to these 10, 000 points (shown as a solid curve) and show the top
50 with more emphasis. The remainder of the points are almost indistinguishable from the
quadratic fit. The emphasized points are expected to flutter somewhat due to the typical
tail behavior of extremes. The fitted quadratic is as follows:

ŷp = α0 + α1 log(p) + α2 log(p)
2 ,

where α0 = 1.88710941, α1 = −1.07362540, and α2 = −0.01309460. We also fitted a
quadratic to the top 1, 000 points (shown as a dashed curve) with corresponding coefficients
α0 = 1.67135058, α1 = −1.09748919, and α2 = −0.01366266. There does not seem to be
much difference between the two fits which supports the extrapolation quality of either curve.

Here ŷp should be interpreted as an estimate of that value yp that is exceeded by 100p% of all
absolute sum values |d1+d2|. Conversely, for given y one can find p̂ = p̂(y) such that y = ŷp̂,
i.e. inverting the fitted quadratic ŷp we find the estimated proportion p̂(y) of absolute sum
values |d1 + d2| that exceed the given value of y > 0. This p̂(y) is given as

p̂(y) = exp


− α1

2α2
+

√√√√y − α0

α2
+

α2
1

4α2
2


 .

This estimate p̂(y) is not exactly the same as 1 − Ĝn(y), but it comes very close, except
for the very extreme values of y > 0. While 1 − Ĝn(y) gives the true sample proportion
of |di + dj| values exceeding y, the estimate p̂(y) is a smoothed version of it, arising from
inverting the smoothed quadratic quantile estimate ŷp.

Given the previously mentioned symmetry property of the d1+d2 distribution we can consider
y2p to be that point which is exceeded by 100p% of all sum values d1 + d2. Similarly,
p1(y) = p(y)/2 is the proportion of sum values d1 + d2 that exceed the given value of y > 0.
ŷ2p and p̂1(y) = p̂(y)/2 are the corresponding estimates of y2p and p1(y), respectively.

Again it is of interest to understand the uncertainty in the estimates ŷ2p, i.e., how much would
these estimates fluctuate when used on different samples of the same size. Appendix B details
some theory pertaining to the estimate Ĝn(t) and its quantile inverse function and their
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Figure 17: Extreme |d1 + d2|-Values Versus Their Tail Fraction
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respective uncertainty assessments. Unfortunately the calculations for getting confidence
bounds become quite prohibitive.

Thus we opted for the bootstrap approach which is computationally still quite demanding
but more manageable. We sampled with replacement the original deviation sample of size
n = 12, 314 to get a new sample of size n = 12, 314. From it we calculated another estimate
ŷ�

2p,1 based on fitting a quadratic to the 1000 highest values of |di + dj|. This is our first
bootstrap estimate and the superscript � indicates the bootstrap nature of this estimate.

Then we repeated this bootstrap simulation another 999 times to get altogether 1000 such
estimates ŷ�

2p,1, . . . , ŷ
�
2p,1000. Their histograms for p = 10−3, 10−4, . . . , 10−9 are shown in Fig-

ure 18-19 together with the estimates ŷ2p for the same values of p. These histograms provide a
reasonable sense of the variability that affects the estimates. Also shown in these histograms
are 95% upper confidence bounds for the respective target quantiles. The construction of
these confidence bounds is detailed below.

There are several different bootstrap methods for constructing confidence bounds. The one
employed here proceeds as follows. If the distribution of ŷ2p − y2p were known one could
determine its .05-quantile x.05 with the property

P (ŷ2p − y2p ≥ x.05) = .95 or P (ŷ2p − x.05 ≥ y2p) = .95 ,

i.e., ŷ2p − x.05 would serve as a 95% upper confidence bounds for y2p.

Unfortunately we don’t know the distribution of ŷ2p − y2p. Conceptually one could estimate
x.05 by repeatedly (say M times) obtaining a sample of size n = 12, 314 from the true
cumulative distribution function F of the deviations di, sorting all N = 75, 811, 141 possible
absolute paired sums |di + dj| from this sample of size n, fitting again a quadratic to the
top 1000 of such |di + dj| values, and from that obtain an new estimate ŷ2p and thus a new
ŷ2p − y2p each time. Doing this M times would yield a sample ŷ2p,1 − y2p, . . . , ŷ2p,M − y2p

from which the .05-quantile would serves as estimate of x.05. This estimate would be quite
accurate if M is sufficiently large, say M = 1000.

In this conceptual approach it is assumed that F is known, in part because we want to sample
from it and also because through F we can get the distribution function G of |d1+d2| which in
turn yields the quantile y2p that was subtracted in each of the terms ŷ2p,ν−y2p, ν = 1, . . . ,M .

Instead we use the distribution of ŷ�
2p − ŷ2p as proxy and determine its .05-quantile x̂.05 as

an estimate of x.05. In doing this we replace the unknown F (y) distribution by the estimate
F̂n(y) and the unknown y2p by its estimate ŷ2p. Here the estimate F̂n(y) = {proportion
of d1, . . . , dn which are ≤ y} is the empirical distribution function of the original deviation
sample and sampling from it is the same as sampling with replacement from the original
deviation sample d1, . . . , dn.

If ŷ�
2p(.05) denotes the .05-quantile of the 1000 bootstrap estimates ŷ�

2p,1, . . . , ŷ
�
2p,1000 we get

x̂.05 = ŷ�
2p(.05)− ŷ2p and thus ŷ2p − x̂.05 = ŷ2p − [ŷ�

2p(.05)− ŷ2p]

as 95% upper confidence bounds for y2p.
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Figure 18: Bootstrap 95% Upper Confidence Bounds for (1− p)-Quantiles
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Figure 19: Bootstrap 95% Upper Confidence Bounds for (1− p)-Quantiles
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It is these 95% upper confidence bounds that are shown in Figure 18-19 together with the
original estimates as they are given in Table 5 for the one-sided risks p = 10−6, 10−7, 10−8, 10−9.

Table 5: Estimates and 95% Upper Bounds for the (1− p)-Quantiles of d1 + d2

Based on the Quadratic Fit to 1000 Largest |di + dj|-Values Versus log(Tail Fraction)

one-sided exceedance risk p

10−3 10−4 10−5 10−6 10−7 10−8 10−9

estimate 7.96 ft 10.03 ft 11.95 ft 13.72 ft 15.35 ft 16.83 ft 18.17 ft

95% upper bounds 8.79 ft 10.53 ft 12.50 ft 14.50 ft 16.44 ft 18.27 ft 19.96 ft

When comparing the estimates and confidence bounds in Tables 4 and 5 we find remarkable
closeness in the respective confidence bounds, differing from each other by only .04 ft – .88 ft,
while the respective estimates show somewhat larger discrepancies of .06 ft – 1.67 ft. We
thus decided conservatively to proceed with the results from Table 4 for any further risk
assessments.

6 Separation Thresholds for Parallel Taxiways

From the clearance criterion (1) it is evident that the centerline separation T of parallel
taxiways should exceed the (1 − p)-quantile of (W1 +W2)/2 + d1 + d2 or T should exceed
(W1 +W2)/2+ δ1−p, where δ1−p is the (1− p)-quantile of the d1 + d2 distribution. Instead of
the unknown δ1−p we use its estimate or conservatively a 95% upper confidence bound for

δ1−p, namely δ̂1−p or δ̂U,1−p, respectively. To avoid potential collison at the indicated risk p
we would then require

W1 +W2

2
+ δ̂1−p < T or

W1 +W2

2
+ δ̂U,1−p < T .

Recall that we removed certain biases from the deviation data before proceeding with the
extreme value analyses. This bias maximally was about .75 ft and its contribution to d1+d2

is thus maximally 1.5 ft. To allow for this bias correction we conservatively add it back in
when considering the entries to Table 4. Thus the back-corrected estimate of the (1−10−6)-
quantile for d1 + d2 would be 14.35 + 1.5 = 15.85 ft. Combining this with an average
wingspan (W1 + W2)/2 = 220 ft we arrive at an estimated separation threshold value of
235.85 ≈ 235.9 ft, which is the estimate entry in the 10−6 column off to the right of the
average wingspan of 220 ft in Table 6. The remaining values of the table are calculated
analogously.
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Note that Table 6 indicates that the separation thresholds apply to ANC. The reason for this
is that we had to divide the adjusted JFK deviations by 1.097 before we were able to pool
them with the adjusted ANC deviations. To make our quantile estimates and confidence
bounds applicable to the JFK situation we have to multiply them by 1.097 before we add
in the bias correction of 1.5 ft and adding that to the average wingspan. For example, the
back-corrected estimate of the (1− 10−6)-quantile for d1 + d2 would be 14.35× 1.097+1.5 =
17.24 ≈ 17.2 ft which then gets added to the average wingspan, say 220 ft, to arrive at
the estimate 237.2 ft, the entry in the 10−6 column to the right of 220 ft in Table 7. The
remaining values of the table are calculated correspondingly. Note that the rows in these
tables just differ by the average wingspan increment (10 ft) from row to row and they are
given just for convenience of easier lookup.

The differences between corresponding estimates from Table 6 and 7 range from 1.3− 1.9 ft,
while for the confidence bounds they range from 1.4− 1.9 ft.

Table 8 shows the corresponding results obtained from the Schiphol data as presented in [1].
The estimated values in Table 5 are approximately .8− 1.6 ft higher than the values at JFK
as given in Table 7, while the confidence bounds are 2.6− 3 ft higher.

Given the differences between the JFK and ANC separation thresholds one should not be
surprised by further differences between the results from JFK and Schiphol. Whether one
should look for explanations other than that we deal with different airports is open to debate.

We offer a few possibilities that might explain differences between Schiphol on one side and
JFK and ANC on the other:

1. The Schiphol data set was smaller, n = 7, 855, while the ANC-JFK data set consisted
of n = 12, 314 deviations.

2. Looking at the normal probability plot of the Schiphol data it is apparent that the
data don’t look symmetric around zero or any other value. It is not clear why this is
the case. For the ANC and JFK data we saw symmetry around some bias offset that
was explained by parallax effects and avoidance of taxiway centerlights. The Schiphol
study did not account for any biases even though a bias (a non-zero mean deviation)
was recognized.

3. For the extreme value analysis in the Schiphol study the absolute values were used
without bias correction, i.e., the longer tail behavior on one side was mixed with the
shorter tail behavior on the other side. In a sense one “averages” the extreme value
behavior from both sample tails. It is not clear what effect that has.

4. In the Schiphol study simultaneous 90% confidence bounds were obtained while for
JFK and ANC the confidence bounds were at a 95% confidence level for individual
coverage. One could make a case that these two differences more or less cancel each
other out.
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Table 6: Required Separation T Between Taxiway Centerlines for ANC

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 189.4 191.6 193.8 195.9 197.8 199.7 201.4

190 199.4 201.6 203.8 205.9 207.8 209.7 211.4

200 209.4 211.6 213.8 215.9 217.8 219.7 221.4

210 219.4 221.6 223.8 225.9 227.8 229.7 231.4

220 229.4 231.6 233.8 235.9 237.8 239.7 241.4

230 239.4 241.6 243.8 245.9 247.8 249.7 251.4

240 249.4 251.6 253.8 255.9 257.8 259.7 261.4

250 259.4 261.6 263.8 265.9 267.8 269.7 271.4

260 269.4 271.6 273.8 275.9 277.8 279.7 281.4

270 279.4 281.6 283.8 285.9 287.8 289.7 291.4

280 289.4 291.8 293.8 295.9 297.8 299.7 301.4

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 189.4 191.7 193.9 196.1 198.1 200.1 202.1

190 199.4 201.7 203.9 206.1 208.1 210.1 212.1

200 209.4 211.7 213.9 216.1 218.1 220.1 222.1

210 219.4 221.7 223.9 226.1 228.1 230.1 232.1

220 229.4 231.7 233.9 236.1 238.1 240.1 242.1

230 239.4 241.7 243.9 246.1 248.1 250.1 252.1

240 249.4 251.7 253.9 256.1 258.1 260.1 262.1

250 259.4 261.7 263.9 266.1 268.1 270.1 272.1

260 269.4 271.7 273.9 276.1 278.1 280.1 282.1

270 279.4 281.7 283.9 286.1 288.1 290.1 292.1

280 289.4 291.7 293.9 296.1 298.1 300.1 302.1
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Table 7: Required Separation T Between Taxiway Centerlines for JFK

Estimate ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 190.2 192.6 195.0 197.2 199.4 201.4 203.3

190 200.2 202.6 205.0 207.2 209.4 211.4 213.3

200 210.2 212.6 215.0 217.2 219.4 221.4 223.3

210 220.2 222.6 225.0 227.2 229.4 231.4 233.3

220 230.2 232.6 235.0 237.2 239.4 241.4 243.3

230 240.2 242.6 245.0 247.2 249.4 251.4 253.3

240 250.2 252.6 255.0 257.2 259.4 261.4 263.3

250 260.2 262.6 265.0 267.2 269.4 271.4 273.3

260 270.2 272.6 275.0 277.2 279.4 281.4 283.3

270 280.2 282.6 285.0 287.2 289.4 291.4 293.3

280 290.2 292.6 295.0 297.2 299.4 301.4 303.3

95% Upper Bound ≤ T (ft)

collision risk p

wingspan (ft) 10−3 10−4 10−5 10−6 10−7 10−8 10−9

180 190.2 192.7 195.1 197.5 199.7 201.8 204.0

190 200.2 202.7 205.1 207.5 209.7 211.8 214.0

200 210.2 212.7 215.1 217.5 219.7 221.8 224.0

210 220.2 222.7 225.1 227.5 229.7 231.8 234.0

220 230.2 232.7 235.1 237.5 239.7 241.8 244.0

230 240.2 242.7 245.1 247.5 249.7 251.8 254.0

240 250.2 252.7 255.1 257.5 259.7 261.8 264.0

250 260.2 262.7 265.1 267.5 269.7 271.8 274.0

260 270.2 272.7 275.1 277.5 279.7 281.8 284.0

270 280.2 282.7 285.1 287.5 289.7 291.8 294.0

280 290.2 292.7 295.1 297.5 299.7 301.8 304.0
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Table 8: Required Separation T Between Taxiway Centerlines for Schiphol

Estimate ≤ T (ft) 90% Upper Bound ≤ T (ft)

collision risk p collision risk p

average
wingspan 10−6 10−7 10−8 10−9 10−6 10−7 10−8 10−9

(ft) T (ft)

220 238.8 240.7 242.4 244.1 240.5 242.6 244.6 246.6

230 248.8 250.7 252.4 254.1 250.5 252.6 254.6 256.6

240 258.8 260.7 262.4 264.1 260.5 262.6 264.6 266.6

250 268.8 270.7 272.4 274.1 270.5 272.6 274.6 276.6

260 278.8 280.7 282.4 284.1 280.5 282.6 284.6 286.6

270 288.8 290.7 292.4 294.1 290.5 292.6 294.6 296.6

280 298.8 300.7 302.4 304.1 300.5 302.6 304.6 306.6

5. The confidence bounds in the Schiphol study were obtained as a mean of all the confi-
dence bounds under 500 different random splits. As indicated before (when taking the
median instead of the mean) this is bound to produce a much higher confidence level
than intended.

6. The different design requirements followed by the United States and those followed by
the Netherlands may also be a contributing factor. For example, the FAA requires
taxiway edge markings in addition to taxiway centerline markings while ICAO does
not require the edges marked.
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Appendix A: Combining Confidence Bounds

Suppose we have n independent and identically distributed random variables X1, . . . , XN

with P (Xi ≥ θ) = γ, where θ is an unknown parameter of interest. We may think of the
Xi as upper confidence bounds for θ with confidence level γ. For simplicity assume that the
distribution of Xi is continuous.

Since we will be switching between various values of γ (γ = .5 anf γ = .95) we write on
occasion more explicitly X1(γ), . . . , XN(γ) to avoid confusion when appropriate.

We would like to find a function Y = f(X1, . . . , XN) such that P (Y ≥ θ) = γ. Trivially one
could take Y = Xi for some prespecified i, but that does not improve the confidence bound.
Furthermore, it does not resolve the question of which i to choose. One should be able to
do better.

If γ = .5 one may have no problem in accepting Y = median(X1, . . . , XN) as the new and
improved estimate for θ. However, for γ �= .5 the median of X1, . . . , XN does not seem to
have the correct coverage.

For example, for γ = .95 it seems that such a median is closer to θ in some distributional
sense but its coverage is much higher than the targeted .95. Taking the .05-quantile of
X1, . . . , XN would seem even closer to θ. In fact, one could consider that an estimate of θ.

We may think of θ as the .05-quantile ofX1(.95), . . . , XN(.95) and thus use an order statistics
based .95 upper confidence bound, i.e., for appropriate i take the ith smallest X(i)(.95) of the
N values X1(.95), . . . , XN(.95) . When N = 500 we find

P (X(34)(.95) ≥ θ) =
34−1∑
j=0

(
500

j

)
.05j.95500−j = .9546

while

P (X(33)(.95) ≥ θ) =
33−1∑
j=0

(
500

j

)
.05j.95500−j = .9336 .

Thus X(34)(.95) would be a candidate solution for our problem. However, it seems possible
that such a .95 upper confidence bound could actually wind up below the estimate obtained
via the median of X1(.5), . . . , XN(.5).

To illustrate and investigate this issue we chose the situation where we have a sample
Y1, . . . , Yn of size n = 20 from an exponential distribution with mean θ = 1. A 100γ%
upper bound for θ is obtained as

X(γ) =
2nȲ

χ2
2n,1−γ

where Ȳ =
1

n

n∑
j=1

Yj .

We can do this for N = 500 such samples of size n = 20 and obtain X(γ) for γ = .5 and
γ = .95, respectively, using the same Ȳ for either case, i.e., get

X1(.5), . . . , X500(.5) and X1(.95), . . . , X500(.95) .
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We then compute the median(X1(.5), . . . , X500(.5)) and X(34)(.95) and plot them against
each other. Repeating this M = 1000 times gives us the scatter plot shown in Figure 20.
Note that the 500 samples of size 20 are the same behind each plot point, i.e., the same 500
averages Ȳ1, . . . , Ȳ500 are used. Thus it is a bit surprising that in 4.3% of the cases we see
that the combined 95% confidence upper bound falls below the combined median (based on
the same 500 samples of size 20).

Just as we used a particular order statistic of X1(.95), . . . , X500(.95) to get a 95% upper
bound for θ we can also use a particular order statistic of X1(.5), . . . , X500(.5) to get a 95%
upper bound for θ. Since

P (X(269)(.5) ≥ θ) =
269−1∑
j=0

(
500

j

)
.5j.5500−j = .9511

P (X(268)(.5) ≥ θ) =
268−1∑
j=0

(
500

j

)
.5j.5500−j = .9413

we can use X(269)(.5) as 95% upper bound for θ (with actual confidence level .9511). Since
median(X1(.5), . . . , X500(.5)) ≤ X(268)(.5) we do not have the peculiar behavior observed
previously. Figure 21 illustrates the results for the same data underlying Figure 20. Not only
are these alternate 95% upper confidence bounds better behaved relative to the combined
medians, but they also are more tightly clustered toward the target θ = 1. The coverages
are about right.
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Figure 20: Comparison of Combined Estimates and 95% Confidence Bounds
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Figure 21: Comparison of Combined Estimates and Alternate 95% Confidence Bounds
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Appendix B: Estimating the CDF of a Convolution

Suppose X1, . . . , Xn is a random sample from the cumulative distribution function (cdf)
F with density f(x) = F ′(x). We are interested in estimating the cdf of the absolute
convolution of two such X’s, i.e., G(x) = P (|X1 + X2| ≤ x). The natural U-statistic
estimator for G(x) is

Ĝn(x) =
1(
n
2

) ∑
1≤i<j≤n

I[|Xi+Xj |≤x] .

This estimator is not only unbiased but has the smallest variance among all unbiased esti-
mators of G(x). While the empirical cdf F̂a,n of the sample of absolute values |X1|, . . . , |Xn|
has atoms 1/n we see that Ĝn has atoms of much smaller size. This seems to indicate that it
is easier to estimate more extreme probabilities/quantiles of G with Ĝn than one is able to
estimate corresponding quantiles of Fa(x) = P (|X| ≤ x) with F̂a,n. For example, for n = 100

it would be difficult to estimate probabilities Fa(x) = .999 with F̂a,n(x) while it would seem

possible to estimate G(x) = .999 with Ĝn(x).

According to U-statistic theory [6] one has that

√
n
(
Ĝn(x)−G(x)

)
−→ N (0, 4ζ1(x)) as n→ ∞ ,

as long as

ζ1(x) = P (|X1 +X2| ≤ x, |X1 +X3| ≤ x)− [P (|X1 +X2| ≤ x)]2 > 0 .

Here one could estimate the unknown ζ1(x) again by an appropriate U-statistic as will be
shown later. The mean and standard deviation of Ĝn(x) are

G(x) and
2
√
ζ1(x)√
n

respectively .

To see whether there is any practical meaning behind this consider the case where n = 100
and F = Φ is the standard normal distribution function. Take x = |x|.999 = 3.29 so that
P (|X| ≤ x) = .999. To address the same probability with G one would need to take
y = |x|.999

√
2 to have G(y) = .999.

For this y = |x|.999
√
2 the standard deviation of Ĝn(x) is

2
√
ζ1(y)

n
=

2
√
ζ1(3.29

√
2)

10
=

2
√
4.104 · 10−5

10
= 0.00128 .

This standard deviation, when added to the target value of .999, could easily push us beyond
1, i.e., the uncertainty of Ĝn(x) would be quite large. However, one may try to finesse this
issue by working with the asymptotic normality of the log-odds-ratio transformed version
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Table 9: Simulated Estimates of Ĝn(x)

0.993737 0.995152 0.995758 0.99596 0.996566
0.99697 0.99697 0.997172 0.997172 0.997172
0.997576 0.997576 0.997576 0.997778 0.99798
0.99798 0.998182 0.998182 0.998182 0.998182
0.998384 0.998384 0.998586 0.998586 0.998586
0.998788 0.998788 0.998788 0.998788 0.998788
0.998788 0.99899 0.99899 0.99899 0.99899
0.99899 0.999192 0.999192 0.999192 0.999394
0.999394 0.999394 0.999394 0.999596 0.999596
0.999596 0.999596 0.999596 0.999596 0.999596
0.999596 0.999596 0.999596 0.999596 0.999596
0.999798 0.999798 0.999798 0.999798 0.999798
0.999798 0.999798 0.999798 0.999798 0.999798
0.999798 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

of Ĝn(x), i.e., use log[Ĝn(x)/(1 − Ĝn(x))]. The above limiting normality for Ĝn(x) would
transform to

√
n
(
log[Ĝn(x)/(1− Ĝn(x))]− log[G(x)/(1−G(x))]

)
−→ N

(
0,

4ζ1(x)

[G(x)(1−G(x))]2

)
.

To investigate the feasibility of such a finessed approach we simulated 100 samples of size n =
100 each and computed Ĝn(x) for x = 3.29

√
2, so that G(x) = .999. The sorted 100 values

of Ĝn(x) are shown in Table 9 and from the large number of degenerate Ĝn(x) = 1 values
it becomes clear that taking the log-odds-ratio transformation would not be a consistent
option, since 1− Ĝn(x) = 0 would lead to division by zero in the odds ratio.

It should be said though that in contrast to this the estimate F̂a,n(3.29) (with Fa(3.29) =

.999) would have resulted most likely in F̂a,n(3.29) = 1 each time.
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Estimating the Quantiles of a Convolution

The p-quantile xp of the convolution cdf G(x) is defined as

xp = inf {x : G(x) ≥ p} .

Since F has density f it follows that G has density g with

g(x) =
∫ ∞

−∞
[f(x− y) + f(−x− y)]f(y) dy

and thus that G is continuous and we have G(xp) = p.

A natural estimator of xp is

x̂p = inf
{
x : Ĝn(x) ≥ p

}
.

From this definition we have

x̂p ≤ y ⇐⇒ Ĝn(y) ≥ p

and thus (using G(xp) = p)

P
(√

n (x̂p − xp) ≤ t
)

= P

(
x̂p ≤ xp +

t√
n

)

= P

(
Ĝn

(
xp +

t√
n

)
≥ p

)

= P

(√
n

[
Ĝn

(
xp +

t√
n

)
−G(xp)

]
≥ 0

)
.

Writing

√
n

[
Ĝn

(
xp +

t√
n

)
−G(xp)

]

=
√
n

[
Ĝn

(
xp +

t√
n

)
−G

(
xp +

t√
n

)]
+
√
n

[
G

(
xp +

t√
n

)
−G(xp)

]

and since G has density g we can conclude that

√
n

[
G

(
xp +

t√
n

)
−G(xp)

]
→ g (xp) t

for all t. Because of the continuity of F one can also obtain (see the arguments in [5] p. 380)
that

√
n

[
Ĝn

(
xp +

t√
n

)
−G

(
xp +

t√
n

)]
−→ N (0, 4ζ1(xp)) as n→ ∞ ,
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just as was previously claimed without the t/
√
n term. Slutsky’s theorem then implies

√
n

[
Ĝn

(
xp +

t√
n

)
−G(xp)

]
−→ Y ∼ N (g(xp)t, 4ζ1(xp)) as n→ ∞

and thus

P
(√

n (x̂p − xp) ≤ t
)
−→ P (Y ≥ 0) = Φ


 g(xp)t

2
√
ζ1(xp)


 .

When g(xp) > 0 this means that

√
n (x̂p − xp) −→ N

(
0,

4ζ1(xp)

g2(xp)

)
as n→ ∞

or x̂p is approximately normally distributed with mean xp and standard deviation

τp =
2
√
ζ1(xp)√
ng(xp)

.

One can estimate τp by estimating ζ1(xp), using a U-statistic estimator as follows. Using a
symmetrized kernel

ψ(Xi, Xj, Xk, xp) = I[|Xi+Xj |≤xp,|Xi+Xk|≤xp] + I[|Xj+Xi|≤xp,|Xj+Xk|≤xp] + I[|Xk+Xi|≤xp,|Xk+Xj |≤xp]

we estimate ζ1(xp) by

ζ̂1(x̂p) =
1(
n
3

) ∑
1≤i<j<k≤n

ψ(Xi, Xj, Xk, x̂p)− Ĝ2
n(x̂p) .

As estimate ĝ(x̂p) for g(xp) we take a local, numerical derivative of Ĝn(x) at x = x̂p.

From this one then obtains an estimate

τ̂p =
2
√
ζ̂1(x̂p)√
nĝ(x̂p)

for τp. As approximate 100γ% confidence interval for xp one can take

[
x̂p + Φ−1

(
1− γ

2

)
τ̂p , x̂p − Φ−1

(
1− γ

2

)
τ̂p

]

with Φ−1(q) denoting the q-quantile of the standard normal distribution.

For our application we have n = 12, 314 and thus
(

n
2

)
= 75, 811, 141 which makes it quite

formidable to calculate Ĝn(x) and to find x̂p. Furthermore, in order to estimate ζ(xp) we

would need to evaluate
(

n
3

)
= 311, 128, 922, 664 terms, which would be quite difficult if not

impossible with our computing equipment.
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