Thursday, August 1, 2013

Full-Scale Evaluation of ARFF Tactics for Cargo Fires on Freighter Aircraft

DOT/FAA/TC-13/30 Authors: Jonathan Torres and Jack Kreckie

Full-Scale Evaluation of ARFF Tactics for Cargo Fires on Freighter Aircraft

 On February 7, 2006, the United Parcel Service Flight 1307 was involved in a cargo fire incident at the Philadelphia International Airport. The official investigation of the incident identified deficiencies in training that Aircraft Rescue and Firefighting (ARFF) personnel had in fighting cargo fires inside freighter aircraft. The National Transportation Safety Board made several recommendations to the Federal Aviation Administration (FAA) related to ARFF training, tactics, strategy, and performance, to provide cargo firefighting training methods to ARFF personnel. As part of a response to these recommendations, the FAA launched a series of full-scale research tests to evaluate different tactics to combat cargo fires.

A series of 11 test scenarios evaluated the effectiveness of certain firefighting tactics on specific cargo scenarios with various types of unit load devices (ULD), also referred to as cargo containers. The tests were performed at the Southern California Logistics Airport inside an Airbus A310. An oxygen deprivation tactic was used to seal all ventilation in the aircraft to determine if it could create an oxygen-deprived environment (i.e., oxygen levels drop below 12%) that would cause the fire to self-extinguish. Two high-reach extendable turrets with aircraft skin-penetrating nozzle (ASPN) technologies were used to evaluate penetration tactics on different-sized containers placed right next to the interior walls of the fuselage and their effectiveness in extinguishing or controlling a container fire. These penetrations were known as direct attacks. Two Snozzle® ASPN configurations and one Stinger® ASPN configuration were evaluated for this part of the research. For the next test scenarios, a Snozzle® ASPN, a Stinger® ASPN, and one prototype ASPN were used to evaluate tactics that involved indirectly attacking containers that were placed at an unreachable distance away from the interior wall of the fuselage. This meant water was discharged into the container from a distance and not from penetrating the container. In addition to container fires, pallet fires were produced to test the indirect attack tactic effectiveness using the standard Snozzle® ASPN.

 Data from the oxygen deprivation tests were inconclusive in determining the effectiveness of the tactic. Results from the direct attack tactics indicated that successful control and/or extinguishment of the fire can be achieved if the ASPN is able to penetrate into the container. Longer penetration into the fuselage proved to be more effective in controlling the fire. Data indicated that the prototype ASPN proved to be more effective than the current designs when indirectly attacking a burning ULD container. The data also showed the current standard ASPN design effectively controlled the open pallet fire in the tests. 


Authors: Jonathan Torres and Jack Kreckie

Documents to download